Evaluating the cartographic capability of ASTER and Radarsat imagery for monitoring soil erosion indicators in the Argentinean Patagonia: an object oriented approach
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Abstract
Areas like the Peninsula Valdes (southern Argentina), declared a UNESCO World Heritage site in 1999, are subject soil degradation by wind and overgrazing.  Mapping and monitoring the presence of landscape erosion indicators such as stabilized and active dunes is crucial to improve prediction, monitoring and planning of areas threatened by sand encroachment.  To this end, this paper investigates and compares the contribution of optical sensors like the Terra-ASTER and the microwave Radarsat ASAR to the discrimination of these land degradation features.  Furthermore, an evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum (e.g. optical or microwave), and their synergistic use in an object oriented fashion.

1. Introduction

Soil erosion is a key factor contributing to land degradation processes worldwide.  Recent reports of the United Nations Environmental Programme mention that around 2 billion ha of soil, equal to 15 per cent of the Earth’s land cover or an area bigger than the United States and Mexico combined, is now classed as degraded as a result of human activities.  

About one-sixth of world’s degraded land is classed as strongly or extremely degraded, making efforts for their restoration largely ineffective. The adoption of measures to remediate or decrease land degradation require access to up-to-date spatial information on the intensity, rate and spatial distribution of soil erosion processes, to curb degradation trends and secure sustainable land use and management. Multi-sensor optical and microwave remote sensing can contribute significantly to map patterns of surface features related to wind erosion at regional level.  

Areas like the Peninsula Valdes (southern Argentina), declared a UNESCO World Heritage site in 1999, are subject soil degradation by wind and overgrazing.  Mapping and monitoring the presence of landscape erosion indicators such as stabilized and active dunes is crucial to improve prediction, monitoring and planning of areas threatened by sand encroachment.  To this end, this paper investigates and compares the contribution of optical sensors like the Terra-ASTER and the microwave Radarsat ASAR to the discrimination of these land degradation features. Furthermore, an evaluation is undertaken to compare the classification accuracy achieved by specific regions of the spectrum (e.g. optical or microwave), and their synergistic use in an object oriented fashion.

2. Methodology

2.1 Study area

The study site is located in the southern portion of the Península Valdés (lat 42º32’S, long

23 63º54’W) in the northeastern region of Patagonia, southern Argentina (Fig. 1). Climate is semiarid, characterized by an annual mean temperature of 13ºC and average annual rainfall of 231 mm, with high mean interannual variation (Coefficient of Variation=30%; Barros and Rivero 1982). The prevailing winds are from the west and north-west (Coronato 1994). Mean annual wind speed is 25 km·h-1 (Barros et al. 1981). It is highly influenced by intense winds of northeast direction prevailing from October to February (Labraga 1994).
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Figure 1: Study area location.

Two dunefields are distinguishable in Península Valdés: the largest one is in the central area forming a belt that stretches from the west to the east coast and the smaller one is a fringe-like dunefield in the southwest corner of the peninsula. General features in the topography of the dunefield are relic aeolian landforms, megapatches of active sand dunes and erosional features like blowouts and deflation plains. Megapatches of active sand dunes include a series of aeolian forms as barchan, dome and transverse dunes. Relict aeolian landforms would have been formed in a periglacial environment (Iriondo and García 1993, Trombotto 1998), and include sand sheets and lineal dunes stabilized by psammophile species. The vegetation is transitional between the southern portion of the Monte Phytogeographic Province and the northern portion of the Patagonian Province (León et al. 1998). The vegetation cover is 50-80% on the dunefields, the most widespread communities stabilizing dunes are a grassland of Sporobolus rigens and a scrubland of Hyalis argentea (Bertiller et al. 1981) (Fig. 2). A shrub steppe of Chuquiraga avellanedae extends between the both dunefields.
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Figure 2: Landscape views of the study area. A) Scrubland of Hyalis argentea, note the stabilized dunes in the background and B) Grassland of Sporobolus rigens and Stipa tenuis.

2. 2  Research approach

The research approach encompasses: 

Identification of landscape features related to the presence of active and stabilised dunes.  Two vegetation types are considered as dune stabilisers: scrub and grass; 

Calibration and georeferencing of the Terra ASTER imagery, including the computation of spectral indices and principal component analysis for the removal of redundant spectral information; 

Despeckle and georeferencing of a precision mode Radarsat imagery; 

Creation of a geo-spatial soil database to store field observations and spectral characteristics of wind-erosion related features in the optical and microwave regions of the spectrum; 

Extraction of Radarsat derived textural measures;  

Segmentation and object-oriented classification of the selected imagery using eCognition.  This step requires the definition of proper fuzzy membership functions for characterising stabilised and active dunes, as well as main vegetation classes of the study area.

Accuracy evaluation of the spectral ASTER data, the ‘textural’ Radarsat ASAR data and combined spectral and textural data provided by ASTER and Radarsat data sets using an error matrix and Kappa statistics.

2.2.1 Image preprocessing

ASTER level 1B scene (raw image corrected from instrumental and geometric errors, ERSDAC 2000) was acquired over the study area. The Terra ASTER acquires data in 3 separate subsystems, namely VNIR (bands 1, 2, 3 spatial resolution of 15 m), SWIR (bands 4 to10, spatial resolution of 30 m), and TIR (bands 11 to 14, spatial resolution of 90 m) .The image was acquired on November 27 2004, georeferenced in the Universal Transverse Mercator projection (UTM Zone 20), WGS-84 ellipsoid, and converted to radiance values. Given the high correlation between the ASTER bands (above 0.9) a principal component analysis was applied to remove redundant information.  The analysis revealed that the first two components explained 98% of the image variability, and thus they were selected for further analysis. The ASTER VNIR and band 4 showed the highest contribution to these first two components, and thus were selected as the raw bands to be included in the classification process. Furthermore, the Soil Adjusted Vegetation Index (SAVI) (Huete, 1988) was computed as a means to gather information on vegetation cover.
A Radarsat-1 ASAR image, C-band, HH polarization, acquired on the 1st January 2005, in fine mode 4 with a spatial resolution of 8 m was used to evaluate the contribution of the microwave region of the spectrum to the differentiation of different land degradation features of the study area. The raw RADARSAT data was converted to magnitud image products (ERDAS 2003). Different low-pass spatial filters were tested to decrease speckle contribution (Gamma-MAP, Lee-Sigma, Local Region, Frost, and Median). The test showed the Frost filter with three iterations and window sizes of 3, 3 and 5 showed the best results in decreasing speckle. The filter image was georeferenced the UTM projection and WGS-84 datum.

Subsequently, image to image registration was conducted between the ASTER and Radarsat images in order to keep registration errors to less than half a pixel. To this end, a nearest neighbour resampling algorithm and output pixel size of 8 m were used.
2.2.2 Extraction of textural information from Radarsat imagery
Textural measures derived from the Grey Level Co-occurrence Matrix (GLCM) were used ascertain their value for mapping active and stabilized dunes (Haralick, 1973). Measures of mean, variance, contrast, and dissimilarity implemented in the Radarsat imagery.  

2.2.3  Object oriented approach

The procedure as outlined in Figure 3 can be divided into two major parts. First, the multi-segmentation of the input data is performed. This process is similar to a visual interpretation, and it can be done at various scales. This procedure produces highly homogeneous segments in a selectable resolution and of a comparable size. Classification is then performed using those objects rather than single pixels. The classification of the image objects can be performed by using nearest neighbour classifiers based on user selected samples or by using fuzzy membership functions (Zadeh, 1965), with user-defined rules. A fuzzy membership ranges from 0 to 1 for each object’s feature values with regard to the object’s assigned class. Spectral, shape, and statistical characteristics as well as relationships between linked levels of the image objects can be used in the rule base to combine objects into meaningful classes (Benz et al. 2004).
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Figure 3: The object oriented approach.

Three image segmentation trials were implemented using different input data sets (Table 1). The first trial used the four raw ASTER bands (1 to 4); whereas the second was arranged using media, variance, contrast and dissimilarity co-ocurrence texture images from Radarsat data. Lastly, the third trial integrated spectral and textural measures. The SAVI derived from the ASTER imagery was included in all trials.

Table 1: Input datasets and parameters used in the trials.
	Trial
	Inputs
	Scale
	Color
	Shape settings

	
	
	Level 1
	Level 2
	Level 3
	
	Smoothness
	Compactness

	1
	B1-4 ASTER
	3
	7
	9
	0.8
	0.9
	0.1

	2
	Textural Measures
	8
	15
	25
	0.8
	0.9
	0.1

	3
	ASTER & Textural Measures
	8
	15
	25
	0.8
	0.9
	0.1


The image classification followed a three-levels approach (Figure 4), whereby the third level, segmented on the coarse scale, used a SAVI threshold for separation of broader land covers (e.g. objects with a SAVI less than 0.74 were considered to be dune fields; above 0.74 were classed as Shrub Steppe). A separation between Grassland, Scrub Steppe and Areas Not Vegetated classes was achieved by a nearest neighbour classification, based on the training samples chosen in the SAVI feature space. The second level aimed at identifying active dunes by defining fuzzy membership functions for mean brightness values, related to the input data of each trial (Table 1). Two subclasses of the Active Dune, namely AD-1 and AD-border, were defined. Then, an object fusion was applied to group the objects of these classes under the general class, active dunes. The Reg class was considered complementary to actives dunes. a classification of the third level was implemented for the extraction of stabilized dunes.

Lastly, the first level was designed to extract areas of active dunes. To this end, we discriminated between dunes stabilized by grass and dunes fixed by scrub, defining the classes GSD-1 and ScSD-1 based on membership functions for mean brightness values (Figure 4). The Grassland and Scrub Steppe classes were defined as complementary of those classes, respectively.
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Figure 4: Membership functions for all the classes (G=Grassland, ScS= Scrub Steppe, AD=Active Dune, GSD=Grass Stabilized Dune, ScSD=Scrub Stabilized Dune). BR denotes brightness, L to W means the ratio Length/Width and RB is the relation of border to a certain class.

2.2. 4  Accuracy assessment
Evaluation of the classifications was accomplished by comparing them to validation information. The accuracy assessment was done by means of an error matrix based on stratified and randomly selected sites across the study area, ensuring at least 50 samples per class (Story & Congalton 1986). The ground truthing was carried out by field survey in the summer of 2005 visiting as many sites as possible, and confirming the vegetation-landform type in situ with a Global Positioning System (GPS) unit. At each validation site, an area at 45 by 45 m was examined, to account for location errors caused by positional inaccuracies of the GPS and/or the geometric correction of the satellite imagery. The number of validation pixels was 729 for Active Dunes, 414 for Reg, 369 for Grassland, 360 for Scrub Steppe, and 837 and 792 for Lineal Dunes Stabilized by Grass and Scrub, respectively.
The error matrix was used as the basis for calculating the overall accuracy, individual class user´s and producer´s accuracy, KHAT statistic and its variance (an estimate of the kappa coefficient) (Congalton 1991). The efficiency of the synergistic approach was evaluated with a kappa analysis. KHAT statistic and its variance were used to construct a hypothesis test for statistically significant difference between error matrices (Cohen 1960), being the null hypothesis is that there is no disagreement between the KHAT values.
3. Initial results 
Figure 5 shows the results of using object-oriented classifications based in spectral data from ASTER (A), textural measures derived of Radarsat (B), and spectral plus textural image data (C). Accuracy assessments for ASTER alone, textural information and ASTER combined texture maps are presented in table 2. The KAPPA analysis result for the pairwise comparison between the ASTER and ASTER combined texture maps (Table 3) shows a result of 5.96, which is superior than 1.96 (the critical value at the 95% confidence level) revealing that the two error matrices are significantly different. Likewise, Table 4 summarises the KAPPA analysis result for the pairwise comparison of the textural data and ASTER combined texture error matrices. The result (4.69) is greater than 1.96 (the critical value at the 95% confidence level) suggesting that the two matrices are significantly different. A comparison of the classification accuracies obtained with the different layer combinations revelead that the ASTER combined texture had better overall accuracy (89.7%) and a higher KHAT statistic value (87.4%) than the classifications resulting with single optical (82.8% and 79.1%, respectively) or textural (84.3% and 81.0%, respectively) layer input, implying thus that the synergic approach enabled better discrimination of the land degradation features in the study area. Kappa statistics of above 80%, with 3 classes showing above 90% accuracy of discrimination, are achieved when mapping the six classes of interest using the synergy of spectral and textural data derived from ASTER and Radarsat imagery (Table 2).
Table 3(a). KAPPA analysis result for the pairwise comparison of the ASTER and ASTER combined texture error matrices.
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Table3(b). KAPPA analysis result for the pairwise comparison of the textural data and ASTER combined texture error matrices.
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Figure 5:  Cartography of soil erosion indicators using: A) ASTER spectral data; b) Textural measures derived from Radarsat imagery; C) The fusion of ASTER and Radarsat.
Table 2: Accuracy assessment of the three object oriented classifications.

[image: image8.emf]
These initial results suggest an improvement in the classification of active dunes and stabilized dunes (vegetated by either scrub or grass) is achieved by using an object oriented classification that integrates textural information derived from microwave imagery and optical/IR data from Terra-ASTER.  It appears that changes in surface roughness caused by different vegetation types stabilising the dunes is a major influence in radar backscattering.  For instance, Radarsat imagery enables a clear separation of long and narrow dunes stabilised by scrub against those stabilised by grass, the former showing a higher classification accuracy.  On the other hand, ASTER optical and infrared wavebands show superior performance in the cartography of grass-stabilised dunes.  It also appears that the synergistic use of microwave, optical and infrared data increases substantially the accuracy in the discrimination and mapping of soil degradation features related to wind erosion.  
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